数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片?数学教材插图遭吐槽,教材插画问题频现,审核去哪了
2023-03-28 13:20:52
出处:
白领街
导读:本文目录数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片数学教材插图遭吐槽,教材插画问题频现,审核去哪了数学手抄报图片简单又漂亮一年级
本文目录
数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片数学教材插图遭吐槽,教材插画问题频现,审核去哪了数学手抄报图片简单又漂亮一年级长春初中现行数学教材是什么版本,要照片最好小学数学教材插图引发争议,除了太过丑还有哪些问题数学的手抄报图片简洁又好看北师大版八年级下册数学书图片三年级用什么样的本子(图片)数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片
导读:数学可以说是这世界上最难攻克的问题,想必很多人的学生生涯都有体会过上数学课打瞌睡的时候吧。数学学不懂那就是天文数字,学懂了那就是加减乘除,为了让大家更喜爱数学,一起去绘制关于数学的手抄报吧,那么数学手抄报图片简单又漂亮的去哪找呢?以下是我带来的全国最漂亮数学手抄报图片,快点来看看吧。 数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片 数学是什么 数学(mathematics或maths,其英文来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。 而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。 学数学的好处 1、崇拜与尊重 一个据说难以被证伪的观点:认真学习的过程本身就值得被人尊重。而尊重需求位于马斯洛需求金字塔第二梯队,可见认真学习是每个人都应该追求的高层次需求。 同时基于经验证据,数学成绩好的同学也更容易受到身边同学的崇拜和追捧。 2、非线性思维能力 高等数学最重要的一个特征就是高度抽象化。一道问题可以没有具体情境,没有数字,甚至没有文字,完全由字母构成题干。 这锻炼的是学生寻求解决问题突破口的能力。基于公理、定理和经验,寻找题目中可能出现的漏洞,作为进一步推导的前提。 3、逻辑思维能力 有了突破口,就是沿着自己给出的前提和假设,一步步地推导。当然,如何前提和假设是错的,那么计算出来的结果也将是错的,但是严格按照数学推断能保证过程的条理性和结果的逻辑性。 数学家的故事 伽利略质疑权威 伽利略17岁那年,考进了比萨大学医科专业。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?” “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。 陈景润攻克歌德巴赫猜想 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。数学教材插图遭吐槽,教材插画问题频现,审核去哪了
我个人认为这些教材里面的插图根本就没有经过审核。以我个人来看,如果这些教材里面的配图和内容经过审核的话,没有任何审核人员会通过相关配图。这是一个非常现实的问题,因为这些教材里面的配图非常不正常,里面的配图甚至存在严重的审美问题。但凡这些配图经过了正常的审核的流程,配图的选择只会越来越好,而不会产生倒退的现象。很多人在吐槽各种教材的插图问题。在人教社的配图事件引起争议之后,很多人发现其他教材的配图也存在严重问题,有人发现人教社的数学教材的配图的画风也非常怪异。有些配图里的儿童在吐舌头,有些配图里的儿童甚至出现了纹身和穿星条服的情况。因为这些配图里面的人物的样子非常丑,很多人怀疑这些配图本身就存在恶意引导的嫌疑,但相关配图却可以成为儿童所使用的教材。这些教材里面的插画和配图根本就没有经过审核。这个道理其实非常简单,如果这些配图经过了正常的审核流程,相关配图和插画就不可能被审核通过。有网友表示任何出版社所推出的教材都要经过至少三次审核和三次校对,但凡这些作品经过了一次审核或一次校对,这些教材的作品就不可能审核通过。我觉得需要进一步加强相关教材的审核力度。在这个事情到了飞飞扬扬之后,我觉得大家不仅需要关注这些教材的插图本真的是没有问题,更需要关注这些教材的审核问题。因为这些教材的直接受众就是儿童,如果我们连儿童的教育都做不好的话,相关行为只会对教育起到负面意义。我认为这是一件非常严肃的事情,我们更需要不断加强对相关教材的审核力度,确保孩子们的健康成长。数学手抄报图片简单又漂亮一年级
数学手抄报图片简单又漂亮一年级 有趣的数学手抄报如何制作?下面由我为大家精心收集的数学手抄报图片简单又漂亮一年级,我们一起来看看吧~ 一年级数学手抄报图片【简单又漂亮】
一年级数学手抄报图片1 【数学手抄报内容】 趣味数学故事之关于“四色问题”的证明 “四色问题”是世界数学史上一个非常著名的证明难题,它要求证明在平面地图上只要用四种颜色就能使任何复杂形状的各块相邻区域之间颜色不会重复,也就是说相互之间都有交界的区域最多只能有四块。一百五十多年来有许多数学家用了很长时间,化了很多精力才能证明这个问题。前些日子报刊上曾有报道说:有好几位大学生用好几台电子计算机联合起来化了十几个小时才证明了这个问题。本人在二十多年前就知道有这么一个“四色问题”,可一直找不到证明它的方法。现在我刚接触到“拓扑学”,其实用“拓扑学”原理一分析,“四色问题”就象当年欧拉把“七桥问题”看成是经过四个点不重复的七条线段的“一笔画”一样简单,连一般的小学生都能证明它。 根据“拓扑学”原理,任何复杂形状的每一块区域都可看成是一个点,两块区域之间相互有交界的可看成这两点之间有连线,只要证明在一个平面内,相互之间都有连线的点不会超过四个,也就证明了“四色问题”。 平面内的任意一个点A可与许许多多的点B、C、D……X、Y、Z有连线(如图1所示),同样B点也可与其它点有连线,C、D……X、Y、Z各点也可与其它点有连线。但有一个原则:各连线之间不能相互交叉,因为一旦交叉就会产生一条连线隔断另一条连线(如图2所示),BC的连线就隔断了AD的连线。但有人会说:两点间的连线可有许多条,AD连线可绕到B点或C点以外(图2中虚线所示)不就没有交叉了吗?可是这样一绕就产生一个结果:原来在一个封闭图形外的点变成了封闭图形内的点。下面就通过对封闭图形的分析来证明相互之间都有连线的点不超过四个。
一年级数学手抄报图片2 一个点本身或两个点之间的连线都可形成一个或多个封闭图形(如图3所示)。三个相互之间都有连线的点从A点连到B点再到C点又回到A点(如图4所示),必定会造成图形的封闭。封闭图形上的点若多于四点(如图5所示),从第三点C起各点与第一点A的连线又将整个封闭图形分割成许多小的封闭图形。因此得出结论①:同一平面上任何三个相互之间都有连线的点,它们之间的连线必定会形成至少一个封闭图形。我们况且叫作三点连线封闭定律。 平面上任何第四点可以是在上述三点连线构成的封闭图形内,也可以在封闭图形外(如图6中D点和D′点),D点可分别与A、B、C点有连线,D′点也可分别与A、B、C点有连线。D点与A、B、C点的连线把封闭图形ABC分割成三个小的封闭图形,D′点与A、B、C点的三条连线中一定有一条被夹在另两条中间,图6中D′A线被D′B线与 D′C线夹在中间,A点被封闭图形BCD′所包围,与D点在封闭图形ABC中情况相同。因此得出结论②:同一平面上任何四个相互之间都有连线的点中,必定有一个点被另三个点连线所形成的封闭图形所包围。我们况且叫作四点连线包围定律。
一年级数学手抄报图片3 那么平面上有没有第五点能分鹩肷鲜鏊牡愣加辛?吣兀渴紫日獾谖宓刨若要与第四点D有连线就必须也在封闭图形ABC里面,其次这第五点不能落在各条连线上,否则会隔断这条连线。第五点只能落在E1、E2、E3位置(如图7所示),而这三个位置上的点分别只能与包围它的小封闭图形上的三个点有连线,而不能与第四点有连线,若要有连线必定会隔断其它连线。因此得出结论③:同一平面上任何相互之间都有连线的`点最多只能有四个,若第五点要与这四点有连线,必定会使其中两点的连线中断。我们况且叫作五点连线必断定律。这就是要求证明的“四色问题”。 以上是在同一平面上证明了“四色问题”。如果各区域图是分布在立体形的表面(比如地球仪),我们根据拓扑学基本原理可以把这个立体形看成扁平形的,把图6中的D点看成在平面前,把D’点看成在平面后,这两点若要有连线除非从平面中穿孔而过或者从立体形表面外的空间跨过去,否则这两点被封闭图形ABC所隔开是不可能有连线的。这个立体形可以是只要中间不穿孔的任何形状,因为不管你表面如何棱棱角角、凹凸不平,从拓扑学来看都与球形是一样性质的,这好比一个气球在充气前可以是任何形状,充气后总是接近球形。但立体形中间有穿孔的情况就不同了,它最后不会变成球形只能变成车轮内胎状的环形,前面的第四点与后面的第五点能通过中间的孔有连线。上面还提到的从立体形表面外的空间跨过去,跨过去的部分实际上与原来的立体形组成了一个环形,最后也能变成车轮内胎状。所以得出结论:中间没穿孔的立体形表面上相互之间都有连线的点最多只能有四个长春初中现行数学教材是什么版本,要照片最好
教材:大多都是人教版的
练习:
我是吉大附中的,
一般是
学费书本自带的:优化练习,评价手册与同步解析(数理化语政史地生)
学校集体买的:数学-启动中学作业本 (自作《五三》)
英语-典中点(自作《五三》)
语文-中考现代文题典(孙立权主编)课外文言文直通车等 太多了
物理-零失误、北大绿卡
化学-这个是我们学校的校本材料小学数学教材插图引发争议,除了太过丑还有哪些问题
小学数学教材插图引发各大网友的广泛争议,更是有很多网友批评指出这个插图存在非常大的问题,而且关于人教版小学数学教材插图已经成了人们所关注的焦点,而对于这个小学数学教材的插图不但存在丑的问题,而且还存在非常严重的价值导向问题,所以不单单是以丑字来形容,更是对于学生们的教育存在至关重要的影响。
一、小学数学插图除了太丑,还存在价值导向的问题。
要知道国内一向都是非常重视国民教育的,特别是针对学生的启蒙教育尤为重视,而人教版小学数学插图已经成了各大家长各大网友争议的话题,单从这个插图的形式上来看不单单是丑,而且还严重影响学生们的思想观和价值观,这样对于启蒙阶段的学生来讲,简直就是毁掉了学生们的未来,同时也回掉了祖国的未来。二、人教版小学教材插图不单单只是丑
说到人教版小学教材的这个插头真的让很多人感到愤怒,因为作为人教版教材,更应该注重审美观念,同时也要引导学生们的正确价值观,而这些插图除了毫无美感,最重要的是插图存在一些暧昧的情节,有些还涉及到性暗示的一些严重问题,所以人教版小学教材的插图不单单是丑来形容,更是对学生们的价值取向产生很大影响。三、总结
总的来说小学数学教材的插图引发了各大网友的争议,这些网友认为这些插图不单单影响孩子的思想和价值观,更是影响了祖国的伟大教育基业,本身学生就是祖国的摇篮,祖国的未来,所谓的百年大计教育为本,如果不在这些课本上做出严厉的批评处理,那么这些事情将很难服众。数学的手抄报图片简洁又好看
简洁的数学手抄报图片
数学的手抄报内容:中西方数学
文艺复兴时期,欧洲的几何学得到了广泛的发展,形成了运用代数解决几何问题的解析几何学说。 16世纪末以后,西方几何学陆续传入中国,与我国古代算术相结合,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习古代算术,几何学以及西方现代数学为主的时期。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 在传入的西方数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《尖锥变法解》、《考数根法》;夏弯翔的《洞方术图解》、《致曲术》、《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的.过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 数学的手抄报资料:高考数学答题技巧
高考数学答题技巧一:数形结合思想 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的 “法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。 高考数学答题技巧二:函数与方程思想 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。 高考数学答题技巧三:特殊与一般的思想 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。 高考数学答题技巧四:极限思想解题步骤 极限思想解决问题的一般步骤为: (1)对于所求的未知量,先设法构思一个与它有关的变量; (2)确认这变量通过无限过程的结果就是所求的未知量; (3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。 高考数学答题技巧五:分类讨论思想 我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。 高考数学答题技巧六:入场临战,通览全卷 最容易导致心理紧张、焦虑和恐惧的是入场后与答卷前的“临战”阶段,此时保持心态平稳是非常重要的。刚拿到试卷,一般心情比较紧张,不要匆忙作答,可先通览全卷,尽量从卷面上获取最多的信息,为实施正确的解题策略作铺垫,一般可在五分钟之内做完下面几件事: (1)填写好全部考生信息,检查试卷有无问题; (2)调节情绪,尽快进入考试状态,可解答那些一眼就能看得出结论的简单选择或填空题(一旦解出,信心倍增,情绪立即稳定);北师大版八年级下册数学书图片
图片在后面《义务教育课程标准实验教科书·数学》八年级下册简介 课程教材研究所 左怀玲 《义务教育课程标准实验教科书? 数学》八年级下册包括5章,约需61课时,供八年级下学期使用。具体内容如下: 第16章 分式 (约13课时) 第17章 反比例函数 (约8课时 ) 第18章 勾股定理 (约8课时 ) 第19章 四边形 (约17课时) 第20章 数据的分析 (约15课时) 本册书的5章内容涉及《数学课程标准》中“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容。其中对于“实践与综合应用”领域的内容,本册书在第19章和第20章分别安排了一个课题学习,并在每一章的最后安排了2~3个数学活动,通过这些课题学习和数学活动落实“实践与综合应用”的要求。这5章大体上采用相近内容相对集中的方式安排,前两章基本属于“数与代数”领域,随后的两章基本属于“空间与图形”领域,最后一章是“统计与概率”领域,这样安排有助于加强知识间的纵向联系。在各章具体内容的编写中,又特别注意加强各领域之间的横向联系。 一、内容分析 “第16章 分式” 本章主要研究分式及其基本性质,分式的加、减、乘、除运算,分式方程等内容。这些内容分为三节安排。 第16.1节类比着分数的概念给出了分式的概念,类比着分数的基本性质探讨了分式的基本性质,类比着分数的约分、通分介绍了分式的通分、约分等,这些内容为后面两节的学习打下理论基础。第16.2节讨论分式的四则运算法则,教科书从实际问题出发,首先研究了分式的乘除运算,类比着分数的乘除,探讨了分式的乘除运算法则;接下去,教科书也是从实际问题出发,采用与分数加减相类比的方法,研究了分式的加减运算,得出了运算法则,并学习分式的四则混合运算;最后,教科书结合分式的运算,研究了整数指数幂的问题,将正整数指数幂的运算性质推广到整数范围,并完善了科学记数法。本节内容是全章的重点,其中分式的混合运算也是全章的一个难点。第16.3节讨论分式方程的概念和解法,主要涉及可以化为一元一次方程的分式方程。教科书从实际问题出发,分析问题中的数量关系,列出分式方程,由此引出分式方程的概念,接下去研究分式方程的解法,教科书采用与学生已有经验相联系的方式,探讨了如何将分式方程转化为整式方程,从而得到分式方程的解的问题。解分式方程中要应用分式的基本性质,并且出现了必须验根的情况,这是以前学习的方程中没有遇到的问题,教科书结合具体例子,对分式方程为什么需要验根进行了解释。分式方程提供了一种解决实际问题的数学模型,它具有整式方程不可替代的特殊作用,根据实际问题列出分式方程,是本章教学中的另一个难点。 “第17章 反比例函数” 本章的主要内容包括反比例函数的概念、图象和性质,以及用反比例函数分析和解决实际问题等。本章是继八(上)“第11章 一次函数”后的又一章函数的内容。全章分为两节:第17.1节反比例函数,第17.2节实际问题与反比例函数,全章内容紧紧围绕着实际问题展开,实际问题是贯穿全章的一条主线。 第17.1节主要研究反比例函数的概念、图象和性质。本节中,教科书首先从几个学生熟悉的实际问题出发,分析实际问题中变量间的对应关系,列出反比例函数的解析式,从而引进反比例函数的概念,使学生对反比例函数的认识经历一个由感性到理性的过程;接下去,教科书利用描点法画出了函数和的图象,通过探究两个函数图象共同特征,给出了反比例函数的图象属于双曲线的事实,并进一步得到函数和的图象关于x轴和y轴对称的结论,接下去,教科书又让学生利用这个结论画出函数和的图象,并进一步通过分析画出的这四个函数的图象,得到反比例函数的性质。第17.2节的内容是利用反比例函数分析、解决实际问题。本节中,教科书以例题的方式,给出了四个实际问题,这四个问题基本上是按照数量关系由简单到复杂的顺序安排的(依次是圆柱的底面积与高,做工时间与做工速度,动力是动力臂,输出功率与电阻),它们从不同的方面体现了反比例函数是解决实际问题有效的数学模型。 “第18章 勾股定理” 本章主要研究勾股定理和勾股定理的逆定理,包括它们的发现、证明和应用。全章分为两节,第18.1节是勾股定理,第18.2节是勾股定理的逆定理。 在18.1节中,教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题1的形式呈现了勾股定理。关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。通过推理证实命题1的正确性后,教科书顺势指出什么是定理,并明确命题1就是勾股定理。之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题(画出长度是无理数的线段等)中的应用,使学生对勾股定理的作用有一定的认识。第18.2节是研究勾股定理的逆定理,教科书从古埃及人画直角的方法说起,给出如果一个三角形的三边满足,那么这个三角形是直角三角形的结论,然后让学生画出一些两边的平方和等于第三边的平方的三角形,探索这些三角形的形状,可以发现画出的三角形都是直角三角形,从而猜想如果三角形的三边满足这种关系,那么这个三角形是直角三角形,这样就探索得出了勾股定理的逆定理。此时这个逆定理是以命题2的方式给出的,教科书通过对照命题1和命题2的题设、结论,给出了原命题和逆命题的概念。命题2是否正确,需要证明,教科书利用全等三角形证明了命题2,得到勾股定理的逆定理。勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这在数学和实际中有广泛应用,教科书通过两个例题,让学生学会运用这种方法解决问题。 “第19章 四边形” 本章主要研究一些特殊四边形的概念、性质和判定方法。对于特殊的四边形,教科书按照对边之间的平行关系把它们分成两类:两组对边分别平行的四边形——平行四边形,一组对边平行、另一组对边不平行的四边形——梯形。对于平行四边形,除了研究一般的平行四边形外,还研究了矩形、菱形和正方形等几种特殊的平行四边形。 第19.1节主要研究一般平行四边形的概念、性质和判定。教科书从实际生活中的图形出发,抽象概括出平行四边形的概念,通过一系列的探究活动,得出平行四边形的性质和判定方法,并对所得结论进行适当的推理证明;作为判定方法的一个应用,教科书通过一个例题得出了三角形中位线定理。第19.2节主要研究矩形、菱形、正方形的概念、性质和判定,本节是在前一节的基础上,进一步研究这几种特殊的平行四边形。教科书首先研究了矩形和菱形,它们都是有一个特殊条件的平行四边形,矩形是有一个角是直角的平行四边形,菱形是有一组邻边相等的特殊的平行四边形。在此基础上,教科书研究了同时具有两个特殊条件的平行四边形,即正方形,它是有一个角是直角的特殊菱形,又是有一组邻边相等的特殊矩形。第19.3节研究梯形,梯形是与平行四边形并列的另一种特殊四边形,它有一组对边平行,另一组对边不平行,本节重点研究了一种特殊的梯形——等腰梯形,探究得出等腰梯形的性质和判定方法。教科书在最后一节,即第19.4节安排了一个课题学习:重心。通过寻找几何图形的重心的活动,了解规则的几何图形的重心就是它的几何中心,体会数学与物理学科之间的联系。 “第20章 数据的分析” 本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义。全章分为三节。 第20.1节是研究代表数据集中趋势的统计量:平均数、中位数和众数。本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用。接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等。对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义。在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征。第20.2节是研究刻画数据波动程度的统计量:极差和方差。教科书首先利用温差的例子研究了极差的统计意义。方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究。首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的。随后,又介绍了利用计算器的统计功能求方差的方法。本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题。教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”。这个“课题学习”选用了与学生生活联系密切的体质健康问题。由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。为了便于教学操作,教科书根据《中学生体质健康登记表》提供了一个样例。 二、本书编写特点 1.加强与实际的联系,体现知识的形成和应用 密切联系实际,反映知识的来龙去脉,体现知识的形成和应用过程,是本套教科书的一个特点,也是本册书的一个主要特点。本书各章内容编写时,对于概念的引入,知识的形成等均注意从实际问题出发,体现数学来源于实际,同时又注意将所得数学结论运用于实际,通过解决实际问题,体现数学服务于实际。例如,在“分式”一章中,对于分式概念的引入,教科书安排了几个实际问题,通过分析实际问题中的数量关系,列出分式,从而引出分式的概念,体现分式的概念是由于客观实际的需求而产生的;在讨论分式方程时,更是结合实际问题,体现分式方程是解决实际问题的数学模型。在“反比例函数”一章中,反比例函数的概念是通过几个实际问题抽象出来的,本章还专门安排了一节“实际问题与反比例函数函数”,突出了反比例函数是研究实际问题的数学模型。在“勾股定理”一章中,对于勾股定理及其逆定理的发现是结合实际生活展开的,同时也编写了这两个定理在解决实际问题中的应用。在“四边形”一章中,充分体现了四边形,尤其是平行四边形、矩形、菱形、正方形、梯形等与生活的密切联系。由于统计与现实生活的联系是非常紧密的,在“数据的分析”一章中,注意发挥典型案例的作用,对于加权平均数、中位数、众数、方差等统计量的学习,都是在分析实际案例的过程中展开的,在解决实际问题的过程中理解统计的概念和原理。因此,本册书编写时,选择了许多富有时代气息的、典型的、学生熟悉的或感兴趣的实际问题,有些实际问题是用来创设问题背景,为概念的引出或知识的形成服务的,有些实际问题是为数学知识与方法的应用而设计的。 2.注意揭示数学的本质 数学是研究现实世界中的数量关系和空间形式的一门科学,数学来源于丰富的物质世界,数学本身存在着严密的逻辑关系,只有深刻地揭示了数学知识的本质,理清了数学知识之间的逻辑关系,才能真正地理解数学,更好地利用数学解决问题。本书在编写的过程中,充分注意尊重数学的内在体系结构,挖掘数学知识的内在联系,揭示数学知识的本质。例如,在“分式”一章中研究分式的概念和分式的基本性质时,教科书从分数与分式的关系入手,利用了分数与分式是具体与抽象、特殊与一般的关系(即相对于分式而言分数是具体的、特殊的基础对象),揭示了分式是把具体的分数一般化后的抽象代表。根据分数与分式的这种关系,分数的有关结论应该与分式的相关结论相对应,即两者具有一致性,这也就是我们常说的数式通性,因此就可以类比分数的概念、分数的基本性质和分数的运算法则,得出分式的概念、分式的基本性质和分式的运算法则。对于解分式方程出现增根的问题,教科书结合具体例子剖析了出现增根的原因,揭示了问题的本质。在“反比例函数”一章中,教科书在研究反比例函数的定义、图象和性质时,充分渗透了“变化与对应”基本思想,揭示了函数概念的实质就是运动变化与联系对应。在“四边形”一章中,对于平行四边形、矩形、菱形、正方形等概念,教科书注意在原有属概念基础上通过附加一些条件(种差)扩大概念的内涵、减少概念的外延来引出新的种概念,揭示了这几种特殊平行四边形之间的联系。在“数据的分析”一章,强调了加权平均数、中位数、众数、方差等统计量的意义,淡化它们的计算技巧,揭示了各统计量的本质特征,体现了统计的思想。总之,本册书在编写时,力求反映知识之间的相互联系,渗透数学思想方法,揭示数学知识的本质。 3.为学生创设探索和交流的机会,加大学生思维的空间 提倡学生探究式的学习方式,留给学生足够的探索交流的空间,是本册书的一个突出特点。对于本册书中重要的概念、性质、定理,教科书大多是通过设置“观察”“思考”“讨论”“探究”“归纳”等栏目,让学生通过探索活动来发现结论,经历知识的“再发现”过程,在探究活动的过程中发展创新思维能力,改变学生的学习方式。 本册书中“分式”和“反比例函数”两章属于“数与代数”的内容,这些也是传统的内容,与原教材相比,这两章内容在编写时,增加了让学生通过探索活动归纳得出结论的过程,也就是增加了合情推理的成分。比如在讨论分式的基本性质时,教科书设置了一个“思考”栏目,在栏目中要求学生“类比分数的基本性质,你能想出分式有什么性质吗?”,通过学生讨论交流,归纳得出“分式的分子与分母同乘(或除以)一个不为0的整式,分式的值不变”等分式的性质,培养了学生的探究能力和创新意识。再比如,探讨反比例函数的性质时,教科书设置了一个“观察”栏目,要求学生通过观察和以及和的图象,探究反比例函数的性质,最后又设置一个“归纳”栏目,归纳总结反比例函数的性质,这样就让学生经历了一个探索发现结论的过程。 “勾股定理”“四边形”两章属于“空间与图形”领域的内容,与原教科书相比,这两章在内容处理上的一个显著变化是加强了实验几何的成分,将实验几何与论证几何有机结合。论证几何在培养人的逻辑思维能力方面起着重要作用,而实验几何则是发现几何命题和定理的有效工具,在培养人的直觉思维和创造性思维方面起着重大的作用。对于几何中的结论,教科书多数是先让学生通过画图、折纸、剪纸、度量或做试验等活动,探索发现几何结论,然后再对结论进行说明、解释或论证,为由实验几何到论证几何的过渡做好铺垫。例如,在勾股定理的发现中,教科书分别设置了“观察”和“探究”栏目,要求学生通过观察等腰直角三角形的性质以及通过一些计算面积等探究活动,发现勾股定理,最后又介绍了赵爽证明勾股定理的方法,这样就将实验几何与论证几何相结合。再比如,在“四边形”一章中,在探索特殊平行四边形的性质和判定时,充分利用了图形的变换,以菱形的性质为例,教科书设置一个“探究”栏目,要求学生通过对折、剪纸等活动,发现菱形的轴对称性,然后利用菱形的轴对称性,探究发现菱形四条边都相等、对角线互相垂直、对角线平分对角的性质等,并在边框中提问学生能否证明这些结论。这样也使学生经历了一个通过观察、操作、变换等活动,探究发现图形的性质,再对发现的性质进行证明的过程,使直观操作和逻辑推理有机的整合在一起。 “数据的分析”是“统计与概率”的内容,对于统计内容的编写,教科书强调让学生通过统计调查活动,经历数据处理的基本过程,在收集、整理、描述和分析数据的统计活动中,学习有关统计的知识和方法,建立统计的观念。这就为学生提供了广阔的活动空间。 另外,本册教课书在“四边形”和“数据的分析”两章中分别设计了“课题学习”,各章最后都设计了2~3个有一定开放性和探究性的“数学活动”,这些“课题学习”和“数学活动”具有一定的综合性和实践性,为学生提供了实践活动和探索交流的机会,对引导学生探究式的学习方式有一定的促进作用。 三、几个值得关注的问题 1.加强知识之间的相互联系,在已有经验的基础上进行教学 本册书是八年级下册,其中的5章内容与学生已经学过的内容有着千丝万缕的联系。例如,在“分式”一章中,分式的有关概念、性质和运算法则与分数的相应内容紧密相关,分式方程最后要转化为整式方程才得以解决,在分式方程的编写思路上,同整式方程一样,也强调了分式方程是解决实际问题的数学模型的思想;“反比例函数”是本套教科书继一次函数后的又一章函数的内容,它的编写思路与一次函数有许多相似的地方,都强调了函数中的“变化与对应”的思想,都突出了函数是解决变量间存在单值对应关系的数学模型的思想;对于四边形的知识,如一些特殊四边形的概念、平行四边形、梯形的高、面积计算等等,学生在小学已经学过,在七年级下册“三角形”一章中,学生又学习了四边形的内角和等内容,因此,在“四边形”一章中,这些内容未作重复而是直接使用了;对于“勾股定理”,学生在七年级下册“第10章 实数”中已经有所接触(比如学生可以利用勾股定理在数轴上做出表示无理数的点),本章又在此基础上进一步提高认识;对于刻画数据集中趋势的统计量:平均数、中位数和众数,学生在前两个学段已经学习,在“数据的分析”一章中,教科书是在学生已有经验的基础上,在研究数据集中趋势的大环境下提高对这些统计量的认识的。综上分析,教学时可以结合学生的实际情况,进行适当复习,加强知识间的相互联系与综合,在学生已有经验的基础上进行教学,使学生的学生形成正迁移。 2.对于推理的要求 对于推理能力的培养,本套教科书按照“说点儿理”“说理”“简单推理”“用符号表示推理”等不同层次分阶段逐步加深地安排。本册书对于推理的要求基本处于学生在初步掌握了推理论证方法的基础上进一步巩固和提高的阶段。例如,在“四边形”一章中,内容比较简单,证明方法也相对比较单一,但对推理证明的训练还是很重视的,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有些定理的证明,采用了探索式的证明方法,这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。在“勾股定理”一章中,对于勾股定理及其逆定理的证明方法,实际上是过计算进行证明的,这种方法与前面学过的一些判定方法不同。另外,对于互逆命题、互逆定理的概念,教科书是结合勾股定理及其逆定理顺势给出的,目的是使学生对这些逻辑概念有一个感性的认识。学生能够将命题写成“如果……那么……”形式,对于提高学生的逻辑推理能力有一定的益处。因此,教学中要注意引导学生,使学生在熟悉“规范证明”格式的基础上,推理论证能力有所提高和发展。 3.重视文化传承,关注人文教育 本套教科书力求能够成为反映科学发展和文化进步的一面镜子,既体现数学的科学性和应用性,又体现数学科学中蕴涵的文化。本册书不仅涉及数学与实际的关系,渗透建模、数形结合、转化等重要的数学思想,而且涉及勾股定理的发现等重大史实。对于勾股定理,我国古代有许多重要成就,不仅发现了勾股定理,而且使用了许多巧妙的方法进行了证明,尤其在勾股定理的应用方面,对其他国家的影响很大,这些都是我国人民对人类的重要贡献。在“勾股定理”一章,教科书结合具体内容,介绍了我国古算书《周髀算经》关于“勾三、股四、弦五”的记载,介绍了赵爽弦图,以及赵爽利用弦图证明勾股定理的思路。“赵爽弦图”表现了我国古人对数学的钻研精神和聪明才智,它是我国古代数学的骄傲。正因为此,这个图案被选为2002年在北京召开的世界数学家大会的会徽。另外,在“勾股定理”一章,也介绍了国外的有关研究成果。如勾股定理的发现是从与毕达哥拉斯有关的传说引入的,勾股定理的逆定理从古埃及人画直角的方法引入等。这些都是对学生进行文化熏陶的好素材,教学中应注意利用。三年级用什么样的本子(图片)
小学三年级正常学习用的就是双线本、单线本、生字本、(个别学校用抄书本、家长联系本———小单线本)、记事本(小单线本、小双线本、大小作文本、笔记本)任意一种都行。经济不太发达地区还用大小白纸本。除此之外还有稿纸本,作文本,田字格本,数学本之类的大作业本各一个,语数英笔记本几个,日记本一个。学习语文用方格本,三年级就要学习尝试用钢笔写字了,铅笔字也不能落下,基本功很重要;家长可以及时的和孩子的老师沟通,提前给孩子准备好孩子需要用的本子和文具。
相关阅读

-
张翰的新浪微博怎么好久没更新了最近也有更新啊,2014年7月在电视剧《杉杉来了》中饰演霸气深情的Boss封腾,防渣男/再见张翰为什么停用新浪微博因为有一个自称是...

-
本文目录数学手抄报图片简单又漂亮 全国最漂亮数学手抄报图片数学教材插图遭吐槽,教材插画问题频现,审核去哪了数学手抄报图片简单又漂亮一年级...

-
本文目录2017年辽视春晚节目单2017年辽视春晚开始时间是什么时候有哪些明星求2019年辽宁春晚节目单...

-
本文目录李小璐首次回应与贾乃亮复婚的传闻,我和女儿很幸福,是哀莫大于心死了吗李小璐否认新恋情后,首回应与贾乃亮复婚传闻,暴露内心想法,你怎么看李小璐疑否认和贾乃亮复婚,她背后的资产有点惊人...

-
本文目录刘翔近况如何谁有刘翔的近况刘翔复出了吗刘翔现在在干嘛...